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We consider the possibility of using controlled
chaotic operation to produce complex signals directly
at the high-power level in a microwave source. By
implementing symbolic dynamics control, a high-
power source could be guided through complex
pulsed, frequency hopped, or digital information
bearing sequences with negligible control power. This
possibility arises because chaotic behavior is
naturally complex and sensitive to small
perturbations, and we can gently guide the signal
through a preexisting chaotic orbit with tiny
controlling perturbations. We have done this in an
audio-frequency circuit, and the basic control
technique could be extended to high frequencies.

1. INTRODUCTION

We have devised a principle for signal
generation based on the fundamental connection
between chaos and information theory.! It is
possible to use a (possibly high-powered)
nonlinear oscillator to produce a complex signal
in one step: A simple high power chaotic
oscillator naturally produces complex signals,
and small perturbing current pulses can gently
guide the dynamics of the system through the
desired output behavior. The high-power
oscillator could thus remain simple and efficient,
with the more complex control circuitry at the
microelectronic level. We argue that this method
is natural for producing high-power signals in
general, because no amplification stages are
required, and one can operate the source in a
strongly nonlinear state.

This principle for signal generation is based
on the mathematical formalism of symbolic
dynamics.? Symbolic dynamics lets us formulate
a description of chaos that is more akin to digital
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signal processing theory than it is to continuous-
time signal theory. By assigning a discrete
alphabet to the system state space using symbolic
dynamics, the chaotic system becomes a symbol
source, and because it is a continuous-time
waveform source, it is also a digital signal
source.

A very simple chaotic electrical oscillator, for
example, can produce a seemingly random
sequence of positive and negative (bipolar)
voltage peaks’ If these bipolar peaks are
assigned binary symbols 0 and 1 respectively,
then the oscillator can be viewed as a binary
digital source. We can control the binary
sequence by using small perturbing current
pulses, and thus control the large-scale
waveform dynamics. (More sophisticated
waveforms are possible with more complex
systems.) In the same way that small-
perturbation control can be used to guide a
chaotic system through a pre-chosen periodic
path® in state space, we can guide the system
through a desired binary sequence.

The important point about using symbolic
dynamics for general chaos control is that one
need specify only one new symbol for each
Poincaré crossing, and thus symbolic dynamics
provides the crossover from discrete-time
control (Poincaré sampling) to fully digital
control (discrete alphabet). With the advent of
high-speed digital signal processing chips, it
should be possible to extend the basic control
experiment that we describe here to microwave
frequencies because of the minimal computation
required for our control procedure. It is also
possible to reduce the control described here to a
fully binary approach that would require no
multi-level A/D conversion. We point out during
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the description of our experiment some
modifications that would simplify a high-
frequency implementation.

2. THE LORENZ SOURCE

The Lorenz® system is the prototypical
continuous-time system for symbolic dynamics
control and communication. The simplest
information source is the binary symmetric
(memoryless) source, a source of binary symbols
(bits) in which each bit is equally likely
(p(0)=p(1)=1/2) and the probabilities are
independent of the past. The Lorenz system
approximates the binary symmetric source, and it
is also a waveform source. Although the
correspondence is not perfect, it is remarkable
considering the origins of the Lorenz system.®
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Fig. 1. Lorenz trajectory showing Poincaré surface
and binary partition.

The Lorenz equations are x=-ox+oy,
y=Rx—-y—-xz, and z=-bz+xy, with
parameter values =10, R=28,and 5=8/3.
The state point (x, A z) moves on a chaotic

attractor in the three-dimensional state space. A
trajectory of the Lorenz system is shown in Fig.
1. We have labeled one lobe of the attractor with
the symbol 0, and the other with a 1. The
sequence of lobe cycles thus defines a binary
sequence. For the standard parameters, this
binary sequence (somewhat roughly)
approximates the statistics of a coin toss.

The lines shown intersecting the lobes in Fig.
1 are two half-planes viewed edge-on, and
represent the two branches of a Poincaré surface
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of section. The half-planes are defined by the

equations y=+,b(R-1) and |x|=B(R-1).

Because the Lorenz equations represent a highly
dissipative flow, the intersection of the attractor
with the Poincaré surface is approximately a
single thin arc, and we can define a surface of

section coordinate as & = |x|—/bB(R-1).

Because the system is deterministic, the
symbol sequence produced after the state point
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Fig. 2. Lorenz binary inverse coding function x(r ).

crosses the surface of section is determined by
the point of crossing. Suppose the state point
passes through the O branch of the surface of
section and generates the binary symbol
sequence bb,b,... We use the binary fraction to
represent this symbol sequence by the real
number 0.5,b,b;..., where the n™ place behind the
decimal point has value 27". We refer to this real

number r:ZT b,27", specifying the future

symbol sequence, as the symbolic state of the
system. This defines a function r(x) relating the

symbolic state to the Poincaré coordinate, which
we call the statepoint. The inverse of this
function x(r) for the Lorenz system is shown in

Fig. 2. In this figure the & coordinate on the
surface of section has been used as a the
statepoint, and has been normalized so that
x =&/ L. (The statepoint x is of course not the
same as the state coordinate x in the Lorenz
equations.) We call this function the symbolic



waveform coding function, or just the coding
Sfunction. (Mapping discrete symbols to basis
functions is sometimes called waveform coding.)

In practice, we store values of r to finite
precision in a symbol register, say ten bits long.
To produce a desired sequence, we first set
r, =7(x,), so that the first finite-length desired
symbolic state is determined by x,, the value of

x on the first pass through the Poincaré surface.
After the first pass through the surface, the bit
pattern stored in the symbol register is shifted to
the left, and the most-significant bit, representing
the symbol just produced, is discarded. The first
bit of the desired symbol string is then placed
into the least-significant-bit slot of the symbol
register. The new value of 7 is then used as the
destred symbolic state, and the state coordinates
are corrected (one can simply perturb the state
coordinates to the correct values) to correct the
symbolic state when the state point next crosses
the surface of section. (The bitwise complement
of the bit pattern in the symbol register is used
for lobe 1.) This process is repeated indefinitely
to control the desired binary sequence.

Now, in Fig. 1, the oscillations about the 0
and 1 attractor lobes can be seen to correspond
to negative and positive maxima, or spikes, in the
x projection of the full state point. If this x
projection x(f) is used as the transmit signal,

then the message can be extracted (for example)
by simply observing the sequence of spikes in the
waveform. The Lorenz system offers probably
the simplest example of how symbolic dynamics
can be used to transmit digital information.

Figure 1 is actually a controlled Lorenz
trajectory, an ASCII encoding of the word
“chaos.”

3. SYMBOLIC CONTROL EXPERIMENT

We now summarize an audio frequency
experiment. Fig. 3 shows the trajectory of the
double scroll oscillator circuit’ tuned to produce
a Rossler band. We chose this region of
operation for a first experiment because the
symbolic dynamics is simple.® The Poincaré
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surface is shown, as well as the locus at which
control pulses occur on the attractor (the white
swath). We apply tiny current pulses into a
capacitor every cycle to correct the trajectory.®
We have encoded (in 7-bit ASCII) the
message, “Yea, verily, I say unto you: A man
must have Chaos yet within him to birth a
dancing star. I say unto you: You have yet
Chaos in you.” — Friedrich Nietzsche, Thus
Spake Zarathustra. The simple code 0— 01,
1->11 imposes a runlength limit of 1 on 0’s
which satisfies the grammar for the system.® To
demonstrate the effect of the information source
statistics on the signal, we a random sequence of
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Fig. 3. Experimental Rossler band with Poincaré
surface, symbolic partition, and locus of controls.
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Fig. 4. Controlled transmission of two statistically
different binary sequences.
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0’s and 1’s with the same runlength restriction.
A statepoint sequence corresponding to the
repeated transmission of the Nietzsche quotation
followed (starting at cycle »=33000) by



transmission of the random bit stream is shown
in Fig. 4. (The rms control current during the
whole sequence was 0.2 pA; circuit currents are
a few milliamps.) Because of the constraint
imposed by the code, the statepoints x, fall
within bands on the Poincaré surface: The signal
exists on a finite-resolution Cantor set. The
bands correspond to more than one binary
symbol. We can resolve up to six bits, and have
labeled the six-bit sequences on Fig. 4. This
means that one can extract several bits from one
sample, given a sufficient signal to noise ratio.
The overly-constrained symbol  sequence
constrains the statepoint sequence to a point set
of fractional capacity dimension. Because the
binary sequence representing the quotation is
more restrictive than the random bit sequence
(the code 0—> 01, 1> 11 is more restrictive),
the signal is confined to narrower bands during
the quotation than during the random bit
sequence.

Figure 5 shows a statepoint sequence
generated by controlling the oscillator symbolic
dynamics through a sequence of periodic orbits
without dropping control in between. We can
also reduce the dwell time to less than ten cycles,
which causes switches so rapidly that the
periodic orbits are essentially pulses heard as a
sequence of pops on a loudspeaker.

Several simplifications could be used to
implement this control procedure at microwave
frequencies. First, the control pulses need not
have a great deal of resolution, in fact, one could
use on/off control to correct the trajectory only
after the error grows past a predetermined value,
or the pulse-on time could be modulated.
Furthermore, a reference voltage and a low-
resolution sample relative to the reference could
be used to determine the error. We are
developing a technique that uses a 1-bit sample
to determine a go/no-go condition for firing a
control pulse of fixed amplitude. Thus fast multi-
level A/D converters are not needed. We
therefore do not think that it would be very
difficult to repeat this experiment at microwave
frequencies.
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Fig. 5. Controlled “orbit hopping.” Each periodic
orbit is visited for about 100 cycles.
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