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We consider the possibility of using controlled

chaotic operation to produce complex signals directly

at the high-power level in a microwave source. By

implementing symbolic dynamics control, a high-

power source could be guided through complex

pulse~ frequency hopped, or digital information

bearing sequences with negligible control power. This

possibility arises because chaotic behavior is

naturally complex and sensitive to small

perturbations, and we can gently guide the signal

through a preexisting chaotic orbit with tiny

controlling perturbations. We have done this in an

audio-frequency circuit, and the basic control

technique could be extended to high frequencies.

1. INTRODUCTION

We have devised a principle for signal

generation based on the fimdamental connection

between chaos and information theory.1 It is

possible to use a (possibly high-powered)

nonlinear oscillator to produce a complex signal

in one step: A simple high power chaotic

oscillator naturally produces complex signals,

and small perturbing current pulses can gently

guide the dynamics of the system through the

desired output behavior. The high-power

oscillator could thus remain simple and efficient,
with the more complex control circuitry at the

microelectronic level. We argue that this method

is natural for producing high-power signals in

general, because no amplification stages are

required, and one can operate the source in a

strongly nonlinear state.

This principle for signal generation is based
on the mathematical formalism of symbolic

dynamics.2 Symbolic dynamics lets us formulate

a description of chaos that is more akin to digital
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signal processing theory than it is to continuous-
time signal theory. By assigning a discrete
alphabet to the system state space using symbolic

dynamics, the chaotic system becomes a symbol

source, and because it is a continuous-time

waveform source, it is also a digital signal

source.

A very simple chaotic electrical oscillator, for

example, can produce a seemingly random

sequence of positive and negative (bipolar)
voltage peaks.3 If these bipolar peaks are

assigned binary symbols O and 1 respectively,

then the oscillator can be viewed as a binary

digital source. We can control the binary

sequence by using small perturbing current

pulses, and thus control the large-scale

waveform dynamics. (More sophisticated

waveforms are possible with more complex

systems.) In the same way that small-

perturbation control can be used to guide a

chaotic system through a pre-chosen periodic

path4 in state space, we can guide the system

through a desired binary sequence.

The important point about using symbolic

dynamics for general chaos control is that one

need speci~ only one new symbol for each

Poincar6 crossing, and thus symbolic dynamics

provides the crossover from discrete-time

control (Poincar6 sampling) to filly digital

control (discrete alphabet). With the advent of
high-speed digital signal processing chips, it

should be possible to extend the basic control

experiment that we describe here to microwave

frequencies because of the minimal computation

required for our control procedure. It is also

En
possible to reduce the control described hereto a ,;

fblly binary approach that would require no
multi-level A/D conversion. We point out during
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the description of our experiment some of section. The half-planes are defined by the

modifications that would simplifi a high-

fiequency implementation.
equations y = +~~ and 1x1>~~.

Because the Lorenz equations represent a highly

2. THE LORENZ SOURCE
dissipative flow, the intersection of the attractor

with the Poincar6 surface is approximately a

The LorenzG system is the prototypical
single thin arc, and we can define a surface of

continuous-time system for symbolic dynamics section coordinate as ~ = 1x1– ~~.

control and communication. The simplest

information source is the bina~ symmetric

(memo~less) source, a source of binary symbols

(bits) in which each bit is equally likely
(p(0)=p(l)=l/2) and the probabilities are

independent of the past. The Lorenz system

approximates the binary symmetric source, and it
is also a waveform source. Although the

correspondence is not perfect, it is remarkable

considering the origins of the Lorenz system.c
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Fig. 1. Lorenz trajecto~ showing Poincare surface

and binary partition.

The Lorenz equations are i = –ox + w,

j=l?x–y-xz, and i=–bz+xy, with

parameter values o=1O, R=28, and b= 8/3.
The state point (x, y, z) moves on a chaotic

attractor in the three-dimensional state space. A

trajectory of the Lorenz system is shown in Fig.

1. We have labeled one lobe of the attractor with
the symbol O, and the other with a 1. The

sequence of lobe cycles thus defines a binary
sequence. For the standard parameters, this

binary sequence (somewhat roughly)

approximates the statistics of a coin toss.
The lines shown intersecting the lobes in Fig.

1 are two half-planes viewed edge-on, and

reuresent the two branches of a Poincare surface

Because the system is deterministic, the

symbol sequence produced after the state point

g o.o~
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Fig. 2. Loreru binary inverse coding function x(r ).

crosses the surface of section is determined by

the point of crossing. Suppose the state point

passes through the O branch of the surface of

section and generates the binary symbol

sequence blbzb~.. . We use the binary fraction to

represent this symbol sequence by the real

number O.b##~..., where the nt~ place behind the

decimal point has value 2-”. We refer to this real

number r = ~~ bn 2-”, specifing the fbture

symbol sequence, as the ~mbolic state of the

system. This defines a fimction r(x) relating the

symbolic state to the Poincare coordinate, which
we call the statepoint. The inverse of this

flmction x(r) for the Lorenz system is shown in

Fig. 2. In this figure the & coordinate on the

surface of section has been used as a the

statepoint, and has been normalized so that

x = </L. (The statepoint x is of course not the

same as the state coordinate x in the Lorenz

equations.) We call this finction the symbolic
*
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waveform coding jhnction, or just the coding

jimction. (Mapping discrete symbols to basis

fbnctions is sometimes called waveform coding.)
In practice, we store values of r to finite

precision in a symbol re~”.szer, say ten bits long.

To produce a desired sequence, we first set

r,= r(x,), so that the first finite-length desired

symbolic state is determined by XO, the value of

x on the first pass through the Poincar6 surface.

After the first pass through the surface, the bit

pattern stored in the symbol register is shifted to

the left, and the most-significant bit, representing

the symbol just produced, is discarded. The first

bit of the desired symbol string is then placed

into the least-significant-bit slot of the symbol

register. The new value of r is then used as the

desired symbolic state, and the state coordinates

are corrected (one can simply perturb the state
coordinates to the correct values) to correct the

symbolic state when the state point next crosses
the surface of section. (The bitwise complement

of the bit pattern in the symbol register is used

for lobe 1.) This process is repeated indefinitely

to control the desired binary sequence.

Now, in Fig. 1, the oscillations about the O

and 1 attractor lobes can be seen to correspond

to negative and positive maxima, or spikes, in the
x projection of the fill state point. If this x

projection x(t) is used as the transmit signal,

then the message can be extracted (for example)

by simply observing the sequence of spikes in the

waveform. The Lorenz system offers probably

the simplest example of how symbolic dynamics

can be used to transmit digital information.

Figure 1 is actually a controlled Lorenz

trajectory, an ASCII encoding of the word

“chaos.”

3. SYMBOLIC CONTROL EXPERIMENT

We now summarize an audio frequency

experiment. Fig. 3 shows the trajectory of the

double scroll oscillator circuit’ tuned to produce

a Rossler band. We chose this region of
operation for a first experiment because the

symbolic dynamics is simple.8 The Poincar6

surface is shown, as well as the locus at which

control pulses occur on the attractor (the white

swath). We apply tiny current pulses into a

capacitor every cycle to correct the trajectory.8

We have encoded (in 7-bit ASCII) the

message, “Yea, verily, I say unto you: A man

must have Chaos yet within him to binth a

dancing star. I say unto you: You have yet

Chaos in you.” – Friedrich Nietzsche, ZJnJs

Spake Zarathustia. The simple code O+ 01,

1+11 imposes a runlength limit of 1 on O’s

which satisfies the grammar for the system.8 To

demonstrate the effect of the information source

statistics on the signal, we a random sequence of
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Fig. 3. ExperimentalRosslerband with Poincare
surface,symbolicpartition,and locus of controls.
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Fig. 4. Controlled transmission of
different binary sequences.

60000

two statistically

O’s and 1‘s with the same runlength restriction.

A statepoint sequence corresponding to the

repeated transmission of the Nietzsche quotation
followed (starting at cycle n E 33000) by
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transmission of the random bit stream is shown

in Fig. 4. (The rms control current during the

whole sequence was 0.2 vA, circuit currents are

a few milliamps.) Because of the constraint

imposed by the code, the statepoints x~ fall

within bands on the Poincare surface: The signal

exists on a finite-resolution Cantor set. The

bands correspond to more than one binary

symbol. We can resolve up to six bits, and have

labeled the six-bit sequences on Fig. 4. This

means that one can extract several bits from one

sample, given a sufficient signal to noise ratio.

The overly-constrained symbol sequence

constrains the statepoint sequence to a point set

of fractional capacity dimension. Because the

binary sequence representing the quotation is
more restrictive than the random bit sequence

(the code O-+ 01, 1+11 is more restrictive),

the signal is confined to narrower bands during

the quotation than during the random bit

sequence.
Figure 5 shows a statepoint sequence

generated by controlling the oscillator symbolic

dynamics through a sequence of periodic orbits

without dropping control in between. We can

also reduce the dwell time to less than ten cycles,

which causes switches so rapidly that the

periodic orbits are essentially pulses heard as a

sequence of pops on a loudspeaker.

Several simplifications could be used to

implement this control procedure at microwave
frequencies. First, the control pulses need not
have a great deal of resolution, in fact, one could

use on/off control to correct the trajectory only

after the error grows past a predetermined value,

or the pulse-on time could be modulated.

Furthermore, a reference voltage and a low-

resolution sample relative to the reference could
be used to determine the error. We are

developing a technique that uses a l-bit sample
to determine a go/no-go condition for firing a
control pulse of fixed amplitude. Thus fast multi-
level A/D converters are not needed. We

therefore do not think that it would be very
difficult to repeat this experiment at microwave

frequencies.
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Fig. 5. Controlled “orbit hopping.” Each periodic

orbit is visited for about 100 cycles.
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